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Abstract-The stress-strain relation of elastic-brittle materials like concrete under tensile loading
includes some of the stages of linear elasticity, pre-peak non-linear hardening, rapid stress drop and
tension softening. These stages, which correspond to different mechanisms of damage. are modelled
through micromechanical analyses. The behaviours of rapid stress drop and tension softening are
the results of localization of damage and deformation. Based on the damage model of domain of
microcrack growth proposed by Feng and Yu [ACla Aleeh. Sinica 9,251--260 (1993)], this paper
gives the complete constitutive relation including the four stages of an elastic-brittle material
subjected to uniaxial and triaxial tensile loads. As an illustration, the theoretical stress-strain curve
in uniaxial tension is compared with an experimental result.

1. INTRODUCTION

Many elastic-brittle materials such as concrete, rocks and some ceramics fail through
fracture preceded by countless microcracks distributed over the bulk of the material and
propagating at the loading. A tensile stress-strain curve often includes the stages of linear
elasticity, pre-peak non-linear hardening, tension softening etc. (Evans and Marathe, 1968).
In recent years, macro- and micro-failure of materials has received wide attention. While
the pre-peak response in tensile loading has been investigated relatively widely, the under
standing of tension softening is still very crude.

Two main approaches are often used to investigate the constitutive relation of damaged
materials. The first is the phenomenological approach based on continuum damage mech
anics (Bazant and Kim, 1979; Simo and Ju, 1987; Lemaitre and Chaboche, 1988; Ortiz,
1985; Bazant and Pijaudier Cabot, 1988), in which the effects of microscopic damage
mechanisms on material properties are reflected by scalar, vector or tensor damage vari
ables. Significant advances have been made in reproducing certain portions of the macro
scopic response of materials under different load histories. However, it is often difficult for
these damage models to describe the complex evolution process of damage and to model
the response of damaged materials subjected to complex loadings. The second approach is
based on micromechanical damage mechanics, which leads to an improved understanding
of the underlying physical process. In the micromechanical approach, the nucleation,
growth and coalescence of microdefects are studied and their influences on mechanical
properties are reflected in the constitutive relations in certain ways. Up to now, the micro
mechanical damage models for microcrack-weakened brittle materials reported in the open
literature are mainly limited to the pre-peak non-linear hardening regime. Budiansky and
O'Connell (1976), Horii and Nemat-Nasser (1983), Krajcinovic and Fonseka (1981) and
some others derived the damaged compliance tensor using the self-consistent method or
Taylor's model. The Mori-Tanaka method and the differential method are also two impor
tant methods to determine the stress-strain relation of damaged materials (Benveniste,
1986; Hashin, 1988).

The tension softening behaviour of brittle solids has also been considered by some
authors. By introducing a unit cell containing one or more microcracks, Basista and Gross
(1985) proposed a one-dimensional model to predict the quasi-plastic response ofan elastic
brittle solid undergoing internal damage in uniaxial tension. Horii et at. (1989), Ortiz
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Fig. I. A typical stress strain curve of brittle materials in tension (Terrien, 1980).

(1988), and Huang and Karihaloo (1992) also developed several models to describe the
intrinsic tension softening behaviour of quasi-brittle materials, in which discontinuous
macroflaws were often treated as a series of collinear cracks subjected to normal tensile
stress.

However, the micromechanisms of tension softening of brittle materials remain
unclear. In fact, before tension softening occurs, complex distributed damage has evolved
with the loading. The magnitudes of damage in different directions may be different and
are related to the load histories. For some elastic-brittle materials, the main mic
romechanisms of damage are nucleation, growth and coalescence of microcracks, while
other microdefects such as microvoids have no evident influence on the strength and stiffness
(Luo, 1993). Feng and Yu (1993) and Yu and Feng (1995) presented a micromechanics
based damage model, in which the damage state is described by the concept of domain of
microcrack growth (OMG). With the increase of applied stresses, some microcracks, having
propagated along the grain boundaries and been arrested by energy barriers with higher
strength, may satisfy the criterion of secondary growth and propagate further in an unstable
fashion, causing a decrease of capacity of the material bearing the tensile load. The tension
softening of a material is the expression of the transition from the distributed damage to
the localization of damage. In this paper, the OMG damage model (Yu and Feng, 1995) is
extended to the complete response of a brittle material subjected to uniaxial or triaxial
tension loading. For the sake of simplicity, we do not consider the degenerative behaviour
under compressive loading here; it has been discussed by Yu and Feng (1995). As an
illustration, a theoretical stress-strain curve of material under uniaxial tension is given and
compared with the experimental result obtained by Terrien (1980).

2. FOUR STAGES OF STRESS-STRAIN RELATION

Figure I demonstrates a uniaxial tensile stress-strain curve obtained experimentally
by Terrien (1980) in a strain-controlled uniaxial test. This curve includes four stages, i.e.
the stages of linear elasticity, pre-peak non-linear hardening, rapid stress drop and strain
softening. All these stages and their corresponding damage mechanisms are analysed in the
following. For the case of triaxial tensile loading, four similar stages exist, although the
response of materials is more complex.

2.1. The stage of linear elasticity (OA)
When the tensile stress (J ~ (J" where (J, is the critical stress of damage occurring, no

damage occurs and no microcrack propagates in the material. All microcracks undergo
only elastic deformation.
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2.2. The stage ojpre-peak non-linear /1Ordening (AB)
In the stage u, < U < U", where Un is the maximum stress the material can bear (Fig.

1), some microcracks grow in a stable fashion and distributed damage evolves in the
material.

Consider a circular microcrack with radius a in an infinite matrix uniformly loaded at
far field, as shown in Fig. 2. Establish the global coordinate system (0-"["2"') and the
corresponding local coordinate system (o-x·[,,;x;). in which x;-axis is parallel to the
normal vector n. and the .y',-axis is co-planar with the x[- and ",-axes. The orientation of
the microcrack is expressed as (0, r.p), where the two angles 0 and r.p are defined in Fig. 2.
For such a microcrack, the growth criterion takes the form Ou and Lee, 1991):

(K')2 (K' \2I . II _ I
K

lc
+ K

II
() - •

(1)

where K; and K;I' KJ( and KII ( are the mode I and mode II stress intensity factors (SIFs)
and their critical values respectively, and

(2)

(3)

where u" and u;, are the stress tensors in the global and local coordinate systems respectively,
and g;, are the components of the transformation matrix between the two coordinate
systems (Feng and Yu. 1993):

, cos 0 cos r.p sin 0 -MOsin IP,

g;/ = - sin 0 cos (P cos 0 sin Ii sin (p . (4)

sm(j) 0 cos r.p

Once eqn (I) is satisfied by a microcrack, it will propagate in a stable fashion, increasing
its radius from the initial statistically-averaged value a o to the characteristic value a", and
be arrested by grain boundaries with different directions. Then. the DMG is defined as the
orientation scope of all propagated microcracks after a certain loading path. In other
words, all microcracks whose normal vectors are in the orientation scope of the DMG must
have propagated after the loading path.

With increasing applied stress. more microcracks satisfy the fracture criterion of a
microcrack and propagate in a stable fashion. The DMG evolves and its contribution to
the compliance tensor increases. So. the stress-strain relation exhibits a non-linearity. The
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constitutive relations for the above two stages have been investigated by Yu and Feng
(1995).

2.3. The stage of rapid stress drop (Be)

When the stress u reaches the critical value u". some microcracks with certain orien
tations will satisfy the following criterion of secondary growth of a penny-shaped mic
rocrack:

(
K'\' (K'\C

I +_I~ = I
KIC( ) K llu ) •

(5)

where K lCc and K"CC are the critical values of SIFs describing the resistance of material
against microcrack growth. which depend essentially on t-.a. the change of microcrack
radius. In this paper. K ,cc and K llcc are assumed to be material constants. while the
influences of their dependence on l'1a will be discussed in Section 3.4.

Once some microcracks satisfy the criterion (5). they will overcome the restriction of
the grain boundaries and experience the secondary unstable growth, which may cause a
transition from the distributed damage to the localization of damage and a rapid stress
drop at the transition strain f:". During this stage. only a small number of microcracks with
certain orientations propagate further and other microcracks undergo elastic unloading.
Under the condition of strain-controlled loading, the deformation which has received
contributions from all microcracks during the first two stages concentrates gradually to the
minority of microcracks experiencing the secondary growth, which results in a localization
of strain. Therefore. the macroscopic stress drop is the result of the localization of damage
and strain. Its basic cause is the secondary unstable growth of microcracks.

With the stress decreasing. the energy of the microcrack system decreases. After the
energy reaches the minimum energy state related to the imposed macro-strain, the secondary
growth of microcracks stops and then the microcrack system reaches an equilibrated state
corresponding to the point C in the stress-strain curve in Fig. I. At this point, two equations
should be satisfied. One is the criterion of the secondary growth of a microcrack, the other
is the equivalence between the applied strain and the sum of the strains contributed by both
the matrix and all microcracks.

2.4. The stage of tension softening (CD)
With a further increase of imposed strain. some of the microcracks which have under

gone the secondary growth will propagate further, while other microcracks will sim
ultaneously experience unloading. At each point of CD in the curve, the two equations
mentioned above should also be satisfied. Therefore. tension softening is a continuation of
the damage localization and the beginning of macrocracking.

3. L"JIAXIAL TENSION

In order to show the features of microscopic damage for each stage of the stress-strain
relation of brittle materials. we first consider the simple case of uniaxial tension. Assume
the material is subjected to uniform stress (Til = 0 for i,j = 1.2,3. except Un = u > o.

3.1. The stages of linear elasticity and pre-peak non-linear hardening
The detailed procedure for determining the DMG and the constitutive relation for the

stage of pre-peak non-linear hardening can be found in Yu and Feng (1995). In order to
determine the DMG. i.e. the scope of orientation in which all microcracks have propagated
under the uniaxial tension stress u. we substitute the stress Un = (J > 0 and (Ju = 0 for other
indices i and) into eqns (2), (3) and the criterion (I). An equation for (J and (J is obtained
as
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The solution of this equation is

(6)

o

Bc-vfB3-4BiB,

2B I

for
(7)

where 8max (o) is a function of the uniaxial stress 0 and material data, and

(8)

Then the DMG of material under the condition of proportional uniaxial tension can
be expressed as the set of orientation nco), depending on (1, in the form:

(9)

as shown in Fig. 3, which means that all microcracks with orientation 8 :::::: 8max (a) have
propagated, with the final characteristic radius aU" With increasing tensile stress 0, 8max (o)
increases, the DMG nco) grows and its contribution to the compliance tensor also increases.
When 0 reaches the critical stress U,.e at the point B in Fig. 1, 8m"x reaches its maximum
value 8maxc = 8m"xCoeJ, which is obtained from eqn (7). During the stages of rapid stress
drop and tension softening, Omaxc remains constant, the DMG n equals n(ue,) and does not
progress further, although some microcracks in it experience secondary growth.

Once the DMG is determined, the stress (O",)-strain (Si) relation and the overall
effective compliance tensor can be obtained as

SAS )2-22-1
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(10)

(11 )

where sZ" is the elastic and isotropic compliance of an undamaged matrix with Young's
modulus E and Poisson's ratio v, and S~jk/ is the microcrack-induced compliance tensor,
which has the following form:

where nc is the number of microcracks per unit volume of material, pea, e, cp) is the prob
ability density function describing the distribution of the orientations and sizes of micro
cracks in the material, and S~jk/(a, e, cp, (Jij) is the inelastic compliance induced by a single
microcrack with radius a and orientation (e, cp), with the form (Yu and Feng, 1993):

(13)

where the angular brackets are defined by <x) = I or 0 depending on whether x;?: 0 or
x < 0, and B;, denotes the crack opening displacement tensor of the microcrack, depending
upon the compliance of the microcrack-weakened material. Assuming that B;j depends
only upon the compliance of the isotropic matrix, then (Ju and Lee, 1991)

, , 16(I-v2
)

B II = B 33 = (2-v)nE'

B;j = 0 for i #- j. (14)

A microcrack in the material under applied stresses may be open or closed depending
on its orientation and the stress tensor (Jij' In this paper, only the compliances induced by
open microcracks are considered; the compliances induced by closed microcracks are
assumed to be zero. So, the angular brackets exist in eqn (13), and S~jk/ and Sijk/ depend
upon the stress tensor (Jij' For the special case of uniaxial tension, all microcracks are open
and eqn (13) is simplified as

(15)

In eqn (12), the probability density function pea, 8, q» satisfies the following nor
malization condition:

ran"" r~ r2rr

pea, e, cp) sin edcp d8 da = 1,
Jllmin Jo Jo

(16)

where amax and amin are the maximum and minimum radii of microcracks in the material.
In this paper, we assume that all microcracks are distributed uniformly in the orientation
space, i.e.
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(17)

However, in order to extend the constitutive relation obtained to more general cases, the
probability density functions in eqn (12) and in the following equations are still represented
as pea, e, qJ).

The stress-strain relation of the first two stages of material in uniaxial tension is then
obtained as

for 0 ~ (J ~ (Je

(18)

where F2(emax ) is a function of (J because of the dependence of emax on (J in eqn (7), and

16(I-v2 )n,a6
p=

45(2-v)

I p
F() = E + E(10-3v),

(19)

3.2. Stress drop and tension sofiening
Under higher stress, some microcracks arrested by the energy barriers, like grain

boundaries, will satisfy the second growth criterion (5) and propagate in an unstable
fashion, causing localization of damage, rapid stress drop and tension softening. Initially,
we determine the stress a" and the strain eee at the transition point B. In the criterion (5),
we denote

( K')2 (K')2C = __I + _'_I

K,cc Kncc '

Then the criterion (5) is written simply as

By substituting the uniaxial tension stress into eqns (2), (3) and (20), we have

c = ~au(J2 cos
2e[CO~2 e+ si~2 e(_2_)2J.

IT Kicc KI,cc 2-v

(20)

(21)

(22)

It is easy to prove that aC/ae = 0 and a2C/ae2 < 0
2-v _

K,cc ~ -- Kncc . Therefore, G reaches its maximum value,
-Ii .

- 4aua~
Gma:o;: = --,-,

ITKicc

when e= 0 only if

(23)

at e= 0, and the microcracks normal to the tension direction will first pass through the
grain boundaries and propagate in an unstable fashion. By substituting Cmax into eqn (21),
the stress (J" is obtained as
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Fig. 4. The microstructure of material with microcracks experiencing secondary growth.
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From egn (24) and the stress-strain relation (18) in the stage of pre-peak hardening,
the strain at point B and during the stage of rapid stress drop (BC) is derived as

(25)

where F1 (emax,) is obtained from egn (19) by replacing em ax with e max,'

After the tensile strain exceeds the threshold value s" in egn (25), some microcracks
nearly normal to the tension direction will experience secondary growth. As mentioned
above, the distribution of sizes and orientations of microcracks in the material can be
described by the probability density function pea, e, <p). Then we assume that all microcracks
whose orientations are within a small orientation scope 0 ~ e~ e" will experience sec
ondary growth and propagate in the material in an unstable fashion. The microscopic
scenario of such a material is shown in Fig. 4. The number of microcracks experiencing
secondary growth per unit volume of material is

n" = [" en n,p(a, e, <p) sin ed<p de.
.J n Jo

(26)

Thus, the compliance tensor of the material during the stage of tension softening is
decomposed into

(27)

where S;;L denote the components of the inelastic compliance tensor due to the microcracks
with the original sizes, S~h, denote those due to the microcracks with radius au and s~l,

denote those due to microcracks experiencing secondary growth. Based on the DMG
damage model, we have
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(28)

(29)

(30)

where a, is the radius of microcracks experiencing secondary growth, and depends on the
tensile stress a. During the stage of tension softening, the criterion (21) should be satisfied
by microcracks experiencing secondary growth. Because the angle ()cc is generally small, the
relation between a, and a can be obtained approximately from the criterion (21) of sec
ondary growth of a microcrack with orientation () = O. For a microcrack with radius a" and
orientation () = 0, the uniaxial tensile stress gives

(31)

Substituting into egn (21) results in

(32)

Thus, under the case of uniaxial tension, the complete stress-strain relation in the stage
of tension softening is obtained as

[
I ((nK1cc)' )]e = Fo+ F1 «()ma,,) + ISp(2 - v)( I -cos Bc')£ 4a

o
a

1
- t' - I a, fore? t". (33)

The stage of rapid stress drop intersects that of tension softening at the point C (Fig.
1). The strain at C is then equal to that at B, and the stress (1, at C can be obtained from
the following equation:

{
I [(nK~cc)' ]}Fo+ F1 (Omax,) + ISp(2 - v)( I - cos Be',)--.2 - t' - I a, = ecc ·
E 4aoa,

(34)

The difference (ace - (JJ between the stresses at Band C is the magnitude of the stress
drop. Thus, the stage of rapid stress drop is also obtained.

3.3. Comparison with experimental results
In order to illustrate the four stages of the constitutive relation predicted by the model,

the theoretical stress-strain curve in uniaxial tension given in egns (18) and (33) is shown
in Fig. 5, in which we take KI( = 0.08 MN m ll, K nc = 0.16 MN m- li2, K1cc = 0.17 MN
m-3!2, Knee = 0.34 MN m- 32

, ao = 0.26 cm, al< = 0.47 cm, E = 31,700 MPa, V = 0.3,
nc = 1.8 X 106 m - 3 and ()" = 0.08 rad. It can be shown that all of the four stages in the



3368

2

X.-Q. Feng and S.-W. Yu

(J (MPa)
---------- B

c

D

2

Fig. 5. The theoretical uniaxial tension stress-strain curve.

stress-strain curve in Fig. 5 are quite consistent with the experimental results of Terrien
(1980) in Fig. 1. However, only the stage of tension softening in Fig. 5 is gentler than that
in Fig. I, as will be explained in the next section.

It should be mentioned that the constitutive relations (18) and (33) are obtained
without considering interaction between microcracks. Such an assumption is an acceptable
approximation for most stages of material before a macrocrack initiates, even though
localization of damage occurs in the stage of tension softening because only a minority of
microcracks experience secondary growth. Ifinteraction between microcracks is introduced,
the constitutive model will become more complicated and, of course, the results will become
better.

3.4. Effects iJfK,cc and K llce
In the discussion in other sections of this paper, K,cc and Kllec are simply assumed to

be two material constants. However, in general, they change with the increase of microcrack
radius. For different types of material considered, K/cc and also Kllcc may be different
functions of !!.a describing the resistance of material against microcrack growth (Basista
and Gross, 1985). Some typical shapes of the function K,c-c(!!.a) are shown in Fig. 6, with
the various possibilities for KllcA!!.a) being similar.

The choice of the functions K,cd!!.a) and Kllcd!!.a) should be based on the micro
structures and properties of the materials considered. In the case of perfectly brittle
materials, the SIFs K,cc and Kllcc should not depend on the microcrack radius, i.e.
K1cc = K IO and Kllcc = KlIlh with KID and KilO being material constants. In view of the
microscopic mechanisms, the change in the internal energy due to microcrack growth is
entirely contained in the surface energy. From the above discussion, we learn that the
choice of K,cc and Kllec being two constants results in a rapid stress drop in the uniaxial
tensile stress-strain curve, as shown in Fig. 5.

For some other materials, K1cc and Kllcc should depend upon the microcrack radius.
The changes of K1cc and Kllcc with !!.a are caused by the complex energy dissipative

K/Cc

c)

(b)

(a)

Fig. 6. Several typical forms of the function K"d!!.a): (a) a material constant; (b) a linear function;
(c) an exponential function.
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Fig. 7. The uniaxial tensile stress-strain curves for different forms of function K,cc(Ll.a): (a) the
linear function; (b) the exponential function.
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mechanism during microcrack propagation, such as the micro-plastic deformation observed
even in very brittle materials and nucleation of microvoids (Basista and Gross, 1985). This
conclusion was verified by experimental results reported in Broek (1974). Then, contrary
to the case of idealized perfectly brittle materials, K. ce and Knce are assumed to be increas
ing functions of !J.a, such as the linear functions

and the exponential functions

!J.a _
Kllcc = Kilo + ~KII'

a"
(35)

(36)

with /(" /(11' K,,,, KII", C, and CII all being material constants (Basista and Gross, 1985), as
shown in Fig. 6. When the linear functions (35) are adopted, the analysis of the stress
strain relation is similar to that in Section 3.2. The stress-strain curve in the stage of tension
softening will become steeper, and the magnitude of sudden stress drop will become smaller
and even disappear for bigger /(, and /(11, as shown in Fig. 7(a).

When the exponential functions (36) are used, the shape of the uniaxial tensile stress
strain curve changes further. The stage of rapid stress drop cannot be observed for general
material constants. A corresponding stress-strain curve is shown in Fig. 7(b).
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4. TRIAXIAL TENSION

For simplicity, the general three-dimensional stress is first transformed into the prin
cipal stress coordinate system, and we let the global coordinate system be consistent with
the principal stress coordinate system. Therefore, in the global coordinate system (0
XIX2X,) in Fig. 2, the components of stresses tensor are <TIl = <TI' <T22 = <T2' <TJ3 = <T, and
<T" = 0 for i =!= j, in which <T2 is assumed to be the maximum principal stress.

4.1. Orientation olmicrocracks undergoing secondary growth
Substituting the triaxial tensile stress in the principal stress coordinate system into eqns

(2), (3) and (20) leads to

_ 4a" ." , .'." 4a ll sin2e( 2 )2
G = ~~-(<Tl SIn- ecos- <p+<T 2 cos- 0+<71 sm- 8sm- <p)- + 2 -2~

nK ICC nKllcc - v

We can prove that, provided that

e reaches its maximum value em", in the same form as eqn (23) when e= O. Therefore,
for the case of triaxial tension, the microcracks normal to the maximum principal stress
will first undergo secondary growth. From em", = I, the condition of rapid stress drop can
also be obtained as

(38)

which shows that the transition point is related only to the maximum principal stress, but
not the two others.

4.2. Constitutil'e relation
Under the condition of proportional stress loading, when the maximum principal stress

<T2 < <T" the stress-strain relation is isotropic and linear elastic, and

(39)

where

(40)

When <T, :"0; <T2 < <T", the DMG n can be calculated by substituting the stress tensor (Ii)

into the criterion (I) (Yu and Feng, 1995). The stress-strain relation in this stage is
anisotropic and non-linear:

(41)

where
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~ I'- J.Il,P({/.fi,tp)S;i/,Mo,O,CP,(JI)SinOdcpd8 (42)

n

S;lu = Jfn,p({/. 8. tp )S;lk/({/u, o. tp. (J,) sin 0 dcp d8. (43)

n

Once (J: reaches (J", the stress will drop rapidly. The strains /;"'i at the transition point
can be obtained from eqn (41) by using (J:: = (J" and the condition of proportional stress
loading. The changing paths of stresses and strains after the transition point depend on the
mode of loading. For the case of stress-controlled loading, the microcrack will propagate
continuously until macroscopic failure occurs in the materiaL and the stage of gentle
tension softening cannot be observed. Here. we assume the maximum principal strain E:: is
controlled to increase very slowly while all the components of the stress tensor change in
the original proportions. Then. after a certain magnitude of stress drop. the rapid stress
drop will stop and the material will exhibit tension softening behaviour. At any time of
tension softening, two equations must be satisfied. The first is the criterion of secondary
growth of microcracks, which gives the relation between the microcrack radius {/, and the
stress (Ju in similar form to eqn (32) by replacing (J with (J:. The second is based on the
equivalence between the imposed strain and the sum of strains contributed by both matrix
and all microcracks; the constitutive relation for the stage of tension softening is then

(44)

where S;jkl and S;,li are same as eqns (42) and (30). and

S;~I = ffn,p(a, 8. tp )S:II,;({/u. O. tp. !Til) sin 0 dcp dO

n

- [I j"'" I1J)({/. O. cp )S;,u(u". o. tp. (Ji) sin 0 dtp dO. (45)
ILl II ,,()

The intersection point between the stage of rapid stress drop and tension softening,
and also the magnitude of stress drop can be obtained from eqn (44) and E:: = E,,2:' SO the
complete constitutive response of an elastic-brittle material under triaxial tension under
the condition of proportional loading is obtained.

5. CONCLLSIO:--JS

In this paper a micromechanics-based model has been proposed for elastic- brittle
materials undergoing irreversible changes of their microscopic structures due to microcrack
growth.

The basic idea of the present model is to classify the constitutive relation of brittle
materials into four stages and to investigate their corresponding microcrack damage mech
anisms individually. In the stage of pre-peak non-linear hardening. the distributed damage
due to the stable propagation of microcracks can be described by the concept of DMG
suggested by Feng and Yu (1993). After the applied stress exceeds the bearing capacity of
the materiaL localization of damage and strain occurs. which causes a sudden rapid stress
drop and tension softening behaviour of the material. The influences of all microcracks
with different sizes and orientations are introduced into the overall compliance tensor h\
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using the statistical average method based upon Taylor's model. Although only the case of
proportional loading is investigated, it is possible to extend the theory to the problems of
complex loading by using a procedure similar to that given by Yu and Feng (1995).

Howevcr, it should be pointed out that some other factors still have to be considered.
To this end the effects of microcrack interaction may be introduced by the self-consistent
method. The damage-related residual strain in unloading should also be mentioned, even
for some hrittle materials.

4c!wnll/",Ii/Clllcnl.\ rim IHlrk was supported by the Doctoral Program Foundation of thc State Education
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